Shocks and Cold Fronts in Galaxy Clusters
نویسندگان
چکیده
The currently operating X-ray imaging observatories provide us with an exquisitely detailed view of the Megaparsec-scale plasma atmospheres in nearby galaxy clusters. At z < 0.05, the Chandra’s 1 angular resolution corresponds to linear resolution of less than a kiloparsec, which is smaller than some interesting linear scales in the intracluster plasma. This enables us to study the previously unseen hydrodynamic phenomena in clusters: classic bow shocks driven by the infalling subclusters, and the unanticipated “cold fronts,” or sharp contact discontinuities between regions of gas with different entropies. The ubiquitous cold fronts are found in mergers as well as around the central density peaks in “relaxed” clusters. They are caused by motion of cool, dense gas clouds in the ambient higher-entropy gas. These clouds are either remnants of the infalling subclusters, or the displaced gas from the cluster’s own cool cores. Both shock fronts and cold fronts provide novel tools to study the intracluster plasma on microscopic and cluster-wide scales, where the dark matter gravity, thermal pressure, magnetic fields, and ultrarelativistic particles are at play. In particular, these discontinuities provide the only way to measure the gas bulk velocities in the plane of the sky. The observed temperature jumps at cold fronts require that thermal conduction across the fronts is strongly suppressed. Furthermore, the width of the density jump in the best-studied cold front is smaller than the Coulomb mean free path for the plasma particles. These findings show that transport processes in the intracluster plasma can easily be suppressed. Cold fronts also appear less prone to hydrodynamic instabilities than expected, hinting at the formation of a parallel magnetic field layer via magnetic draping. This may make it difficult to mix different gas phases during a merger. A sharp electron temperature jump across the best-studied shock front has shown that the electron-proton equilibration timescale is much shorter than the collisional timescale; a faster mechanism has to be present. To our knowledge, this test is the first of its kind for any astrophysical plasma. We attempt a systematic review of these and other results obtained so far (experimental and numerical), and mention some avenues for further studies.
منابع مشابه
NRAO/Socorro Colloq. Abstract
Mergers of galaxy clusters -some of the most energetic events in the Universe -produce disturbances in hot intracluster medium, such as shocks and cold fronts, that can be used as tools to study the physics of galaxy clusters. X-ray observations of shock fronts provide information on the shock Mach number and velocity, and for wellobserved shocks, constrain the microphysical properties of the i...
متن کاملCold Fronts in Cdm Clusters
Recently, high-resolution Chandra observations revealed the existence of very sharp features in the Xray surface brightness and temperature maps of several clusters (Vikhlinin et al., 2001). These features, called “cold fronts”, are characterized by an increase in surface brightness by a factor ∼> 2 over 10-50 kpc, accompanied by a drop in temperature of a similar magnitude. The existence of su...
متن کاملMergers and Non-thermal Processes in Clusters of Galaxies
Clusters of galaxies generally form by the gravitational merger of smaller clusters and groups. Major cluster mergers are the most energetic events in the Universe since the Big Bang. The basic properties of cluster mergers and their effects will be discussed. Mergers drive shocks in the intracluster gas, and these shocks heat the intracluster gas, and should also accelerate nonthermal relativi...
متن کاملar X iv : a st ro - p h / 04 09 17 7 v 1 8 Se p 20 04 Cluster mergers , core oscillations , and cold fronts
We use numerical simulations with hydrodynamics to demonstrate that a class of cold fronts in galaxy clusters can be attributed to oscillations of the dark matter distribution. The oscillations are initiated by the off-axis passage of a low-mass substructure. From the simulations, we derive three observable morphological features indicative of oscillations: 1) The existence of compressed isopho...
متن کاملar X iv : a st ro - p h / 04 09 17 7 v 1 8 S ep 2 00 4 Cluster mergers , core oscillations , and cold fronts Eric
We use numerical simulations with hydrodynamics to demonstrate that a class of cold fronts in galaxy clusters can be attributed to oscillations of the dark matter distribution. The oscillations are initiated by the off-axis passage of a low-mass substructure. From the simulations, we derive three observable morphological features indicative of oscillations: 1) The existence of compressed isopho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007